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Foreword
It is with pleasure that I present the second of three policy 

perspectives in CEDA’s Australia’s Energy Options series – 

Renewables and efficiency.

CEDA has chosen to examine renewables and efficiency 

because both are vital if Australia is to transition to a low-

carbon emissions energy future at the potential cost of billions 

of dollars. If we don’t get this right it will have significant eco-

nomic, social and environmental costs for Australians. 

However, significant uncertainty surrounds what are the best energy policies to 

pursue, with debate often marred by vested interests.

This policy perspective draws together experts to examine:

The key considerations that need to underpin good energy policy decisions, •	

including environmental, social and economic factors;

Policy options to mitigate market barriers and failures; •	

A methodology to model options to better predict the viability of emerging •	

technologies, providing a means to quantify the value of different policy inter-

ventions; and

The importance of, and options for, improving energy efficiency, including •	

changes to the structure of our energy market.

Globally, attention on addressing climate change has seen a significant focus on 

developing renewable energy options.  In this context Australia really is the lucky 

country. With the exception of hydro, we have a plethora of options, including 

solar, wind, wave and geothermal, meaning we can pick the best technologies 

without being limited by source.

However, most renewable technology is still in its infancy in terms of commer-

cial deployment and there remain question marks as to which technologies will 

become the best options for long-term sustainable energy supply.

And, unfortunately, support for the development and deployment of emerging 

renewable technologies has been ad hoc with a scatter gun approach to policy at 

both a State and Federal level. This is despite the fact that over the next few years 

it is anticipated there will be significant technological and cost breakthroughs for 

renewable technologies.

Equally, the focus on improving efficiency has been limited, despite it having the 

potential to mitigate climate change and reduce the impact of raising energy costs 

in the next decade.

However, as highlighted in John Dashwood’s chapter, these gains can be signifi-

cant – projected global energy use by 2040 would be four times greater if not for 

expected energy efficiency gains. Improving energy efficiency has the potential to 
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buy time before choices need to be made about which renewable technologies are 

deployed for the long-term.

Andrew Pickford’s chapter discusses one option for improving energy efficiency 

based on changing Australia’s energy market, from one based on energy as a 

commodity to an energy services model, similar to how the mobile phone industry 

operates. Under this model consumers are able to buy an energy service depend-

ing on usage, rather than predominantly fixed service charges. 

While energy efficiency gains would buy time, it is critical that government and 

industry embrace a proactive approach to these matters.

Market failures and barriers such as transmission connection hurdles, subsidies 

to existing commercial technologies and policy instability must be addressed if 

renewables are to reach their full potential in Australia.

As highlighted by Tony Wood, as a starting point, an ETS is needed with predictable 

rules and mechanisms to allow industry the certainty it needs to make investment 

decisions and in the short-to-medium term, Governments must support research, 

development and deployment of demonstration plants.

What is required is public policy that is robust enough to adjust to changing 

economic conditions and to technological improvements. To guide public policy 

intervention government must continually model and reassess technology options 

due to the significant cost and risk involved in investing in renewable energy.

In this respect, Professor John Burgess provides an alternative methodology to 

model scenarios that take into account what technological breakthroughs are 

required for individual technologies and also the probability of that occurring.

This model allows the value of different technologies to be measured under dif-

ferent scenarios such as a changing carbon price. It has the potential to provide 

trigger points as risk decreases for technologies, as to when government or indus-

try should invest in research and development, pilot plants, infrastructure or land.  

Finally, Professor Paul Hardisty objectively discusses the environmental, social and 

economic factors that must be considered in assessing energy generation includ-

ing environmental costs of developing and building renewable technologies. 

I would like to thank the sponsors of this policy perspective, Rio Tinto and 

ElectraNet, along with the authors, for their contributions which ensure CEDA can 

undertake important projects such as this.

I hope this policy perspective provides insight and a valuable resource to the 

energy debate.

Professor the Hon. Stephen Martin 

Chief Executive 

CEDA
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Introduction

In the following policy perspective CEDA examines 

the challenge of establishing socially sustainable 

renewable energy policies, puts forward a 

methodology for determining effective renewable 

energy interventions, and recommends the creation  

of a market in energy efficiency.
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The world is wrestling with the challenge of ensuring an ongoing supply of energy 

that does not damage the environment while enabling billions of people to appre-

ciate the benefits of modern life. Global interest in renewable technologies is 

accelerating the maturity of many of these energy sources. These efforts are vital 

if the quality of human life is to be improved across the planet without causing its 

further degradation. 

Energy underpins all aspects of modern life and generates many externalities that 

affect both the environment and society more broadly, such as the environmental 

consequences of extracting the raw materials used in all energy generation. All 

forms of energy generation create externalities, although not all have an influence 

on the climate. 

Numerous policies have been established to adjust for climatic externalities in the 

energy generation and to incentivise low carbon emission sources of energy. There 

is a complex interplay between technological and economic factors influencing 

the deployment of renewable technologies, the relative cost of generating energy 

from different sources, and the broader political and economic cycles. Given how 

fundamental reliable energy is for modern life the costs involved in mitigating 

climate change are substantial. The scale of change requires examining public 

policy outcomes throughout the world to ensure that interventions are producing 

effective results in Australia. 

While there is considerable public goodwill to effectively deal with the challenges 

of climate change, there is no clear means of determining what actions are most 

effective for resolving the problem. Many policy decisions on renewable energy 

appear to be made on an ad hoc basis, with little quantification of the desired 

benefits or accurate estimates of the costs involved, resulting in frequent and 

substantive changes. Public policy needs to be based on the robust and objec-

tive quantification of uncertainties involved if it is to receive sufficient community 

acceptance to be maintained across the economic and political cycles.

Improvements in energy efficiency are set to make the most significant contribution 

to climate change mitigation without any explicit policy support. However, there 

is an opportunity to incentivise energy efficiency improvements while potentially 

delaying the need to deploy energy generation capacity. 

This policy perspective examines the challenges of accounting for social and envi-

ronmental consequences of energy generation and the outcomes of various policy 

interventions both in Australia and internationally. It also contains a potential meth-

odology to replace ad hoc political decision making with an objective analysis of 

the options. Finally, it explores the role of energy efficiency improvements to meet 

energy demand and proposes a model to incentivise further improvements that 

could effectively forestall the need for immediate deployment of energy generation 

capacity.
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A measured debate

This policy perspective includes discussions on the following issues: 

Making renewable energy sustainable.•	  Professor Paul Hardisty, Global Director 

of Sustainability & EcoNomics™ for WorleyParsons, discusses the externalities 

of energy and the range of factors that need to be considered for optimal energy 

generation deployment; 

Policy – the drug of choice for renewable energy.•	  Tony Wood, Program Director, 

Energy, Grattan Institute, describes the rationale for government support of 

renewable energy, reviews the policies applied to date and recommends options 

to move forward; 

Financial uncertainty of technological change.•	  Professor John Burgess, Aus-

tralian Academy of Technological Sciences and Engineering Fellow and Principal 

Niche Tasks, outlines the risks involved in investing in energy generation and a 

methodology for evaluating what actions by investments or government are 

rational; 

The outlook for energy: A view to 2040.•	  John Dashwood, Chairman of 

ExxonMobil Australia, details a forecast of the global energy supply mix over 

the next 30 years and explains the role of energy efficiency in mitigating energy 

demand; and 

Dealing with peak demand:•	  The potential of an energy services model. Andrew 

Pickford, Managing Director, ISSA Indo-Pacific, describes the problem of fast 

growing peak demand, outlines one approach to address it, and introduces the 

broader concept of the energy services model which could incentivise greater 

levels of energy efficiency improvements in the future. 

A sustainable basis for renewable energy 

Renewable energies are forecast to grow at a rapid pace, with some technolo-

gies, such as wind, forecast to rise by more than 900 per cent from 2010 to 

2040.1 Policy support for renewable energy needs to ensure a match between the 

marginal social cost and benefit of removing additional carbon emissions from the 

economy if it is to avoid the boom and bust cycles that have plagued the renew-

able energy sector.2 While the social cost of carbon is set to increase substantially 

over time,3 it will continue to be an externality requiring government intervention 

to quantify. 

Government policy on renewable energy should have climate change mitigation as 

its primary objective. Any government initiative should have clear objectives that 

define what magnitude of carbon emissions are being mitigated both now and in 

the future, with explicit examination of underlying assumptions about technological 

progress and the future cost of carbon. 
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How to make the right decisions

To move beyond ad hoc decision making requires a robust quantification of the 

probabilistic outcomes of a full suite of energy technologies. Such an approach 

would model the net present value (NPV) of an investment in an energy generation 

technology under a range of scenarios. These scenarios should include different 

levels of technological development, various carbon prices, and the relative cost 

of different energy sources. 

Understanding the contours of investment risk around the deployment of low 

carbon emission technologies also allows the merit of various policy initiatives to be 

quantified. For instance, while the net present value (NPV) of solar thermal towers 

may not be positive at this point, analysis may suggest a range of policy options 

that can be undertaken now to facilitate future deployment should technological 

advances occur. These may include funding research and development, support-

ing early-stage deployment and providing assistance with transmission connection 

hurdles and so forth. By analysing the risk contours of an investment decision, the 

effectiveness of various policy alternatives can also be objectively quantified and 

compared. 

Developing the capacity to deploy low carbon emission technologies in the future 

can be considered as equivalent to the nation buying a call option, which is a right 

but not an obligation to purchase the underlying asset in the future, on this form of 

energy. Initial estimates would suggest that Australia has a portfolio of renewable 

energy call options worth approximately $12 billion. The anticipated social benefit 

of individual policy interventions can also be quantified. All government programs 

should be assessed to ensure they are returning an efficient amount of mitigation. 

Buying time

Australia could delay the need to deploy more energy generation capacity by more 

effectively managing the peak period of energy demand. Since energy investments 

are long lived assets, and are undergoing considerable technological innovation, 

such an action would represent a valuable extension of the nation’s call option on 

low carbon emission technology. 

The need to deploy more energy generation capacity is being driven by growth 

in peak energy demand. During 2008–09 in Victoria, approximately 25 per cent 

of the network capacity was used for only 10 days. While residential consumers, 

who drive peak demand, only constitute 27 per cent of electricity use, there are no 

incentives for them to avoid using the peak and are major sources of its growth.4 

One way to address peak load growth would be to establish long-term predictions 

for energy supply requirements for network distribution and transmission net-

works, and then inviting energy service providers and demand side participation 
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companies to engage in competitive bidding to address them.5 This approach 

effectively uses the social benefit of not deploying energy generation capacity as 

an incentive for a number of participants to deliver energy efficiency options. 

Even without such a market, energy efficiency improvements are set to make the 

largest contribution to global carbon emissions mitigation. Adopting an energy ser-

vices model, whereby customers pay for the service energy makes available rather 

than paying for the commodity of energy itself, could create substantive incentives 

for a wide range of participants to find innovative ways to achieve improved levels 

of energy efficiency. 

Renewables and efficiency in the long-term

In order to achieve long term socially sustainable renewables policy: 

Quantify the value of renewable energy sources for mitigating carbon emissions •	

over the long term so that monies expended on them match their social value; 

and 

Replace ad hoc decision making with a rigorous methodology that accounts for •	

the risks, and assumptions, influencing policy intervention.

To maximise the nation’s social benefit from low carbon emissions technology 

development: 

Introduce a market incentivising energy efficiency and, potentially, buy a consid-•	

erable period of time without further energy generation capacity needing to be 

deployed, allowing more time for renewable technological innovation to occur 

prior to deployment. 

Nathan Taylor 

Chief Economist, CEDA

Endnotes

1 	 Dashwood, J., 2012, The Outlook for Energy: A view to 2040, CEDA.

2 	 Wood, T., 2012, Policy – the drug of choice for renewable energy, CEDA.

3 	 Hardisty, P.E., 2012, Making renewable energy sustainable, CEDA.

4 	� Australian Government, 2011, Draft Energy White Paper 2011: Strengthening the foundations for Australia’s energy future, Department 
of Resources, Energy and Tourism, page 173.

5	� Pickford, A., 2012, Dealing with peak demand: The potential of an energy services model, CEDA, page 3.
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Paul Hardisty, Global Director of Sustainability & 

EcoNomics™ for WorleyParsons, discusses the  

importance of making objective energy policy 

decisions that take into consideration environmental, 

social and economic factors.

1. �Making renewable energy 
sustainable

	 Paul E Hardisty
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Are renewables sustainable?

At first, this may seem an odd question. To some, renewable energy and sustain-

ability are synonymous: renewable energy is by definition sustainable. To others, 

sustainability as a concept is symbolised by renewables: visions of elegant white 

turbine blades revolving above green fields, glinting solar mirrors silently track-

ing the sun across a clear desert sky. These are potent images. It might seem 

redundant to suggest that if renewable energy, be it wind, solar, wave, tidal or 

geothermal, is to become a significant part of Australia’s energy future, it must be 

sustainable. However, a number of key questions arise when this issue is exam-

ined more closely:

What does true sustainability entail, in the context of energy supply? •	

Are low carbon emissions alone sufficient to make renewable energy •	

sustainable?

Are there other factors that might have bearing on our determination? and•	

Might renewable energy, in some forms and in certain applications, be •	

unsustainable? 

Objective answers to these questions are not possible without a clear definition of 

sustainability, a much used and often abused word. 

Defining sustainability

Sustainability as a concept has been around for a long time – at least a generation 

in common western parlance and for centuries in many traditional societies. In 

the last few decades, formal definitions, such as the classic Bruntlandian con-

struct (“meeting the needs of the present without compromising the ability of 

future generations to meet their needs”) have become mainstream.1 Organisations 

large and small have launched efforts to become more sustainable, publishing 

Paul Hardisty is Global Director of Sustainability & EcoNomics™ for WorleyParsons,  

one of the world’s leading engineering and project delivery firms with offices in over  

40 countries. EcoNomics™ is a service that embeds sustainability into all stages of the 

project life-cycle. 

Paul is a Visiting Professor in Environmental Engineering at Imperial College of Science 

and Technology in London, UK, and an Adjunct Professor at the University of Western 

Australia School of Business. His new book, Environmental and Economic Sustainability is available through 

amazon.com and other on line booksellers.
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sustainability reports and joining indices such as the Dow Jones Sustainability 

Index and FTSE4Good. However, simple, quantitative explanations of what sus-

tainability actually means in practice, and how to achieve it, remain rare.

History suggests that the idea of sustainability alone has not been enough to 

drive real change. 2 Globally, we continue to degrade our environment at an ever 

increasing rate, with significant effects on society, despite widespread support for 

the idea of sustainability.3,4 This divergence between what we want and what we 

actually do is in part a function of an economic system that currently places no 

value on “externalities” - environmental and social assets which are not valued in 

conventional markets - and a short-term focus driven by discounting and rate of 

return expectations that devalue the future.5,6 

Achieving real sustainability requires balancing the often competing needs of 

society, the environment and the economy, objectively and rationally, over the life-

cycle of the proposition. Trade-offs must be examined explicitly and quantitatively. 

Access to affordable electricity brings huge benefits to society, including increases 

in life expectancy, access to information and education, and development of indus-

tries providing needed goods and services. But 

there are hidden costs to power generation across 

the life-cycle, which are not reflected in the market 

price of electricity. Providing power to remote com-

munities in WA results in improved health for its 

Aboriginal citizens, but generates carbon emissions 

in a largely fossil-fuel powered grid. Native forests 

are cleared to mine the compounds that find their 

way into sophisticated photovoltaic systems. Large 

amounts of precious fresh water is used for cooling 

to enhance the efficiency of power generation. 

Everything has an opportunity cost, everything we do costs money and everything 

affects everything else. If we are not including external costs and benefits when 

making decisions about energy, we are working with an incomplete picture, and 

true environmental, social and economic optima will elude us. True sustainability 

requires that the actions we undertake actually deliver real and long-lasting net 

gains to society. The total costs of undertaking a project must include capital and 

operational costs, but also the costs of consequential damage to society and the 

environment. These must be balanced against the benefits produced, not just 

to the proponent in the form of profits, but to society and the environment as a 

whole. Put more quantitatively, to be sustainable, the full environmental, social 

and economic benefits of a proposition must exceed its environmental, social and 

economic costs, over its life-cycle. 

Adopting this definition of sustainability and using a common unit of measure for 

all stakeholders’ concerns (money), allows trade-offs to be compared objectively, 

quantitatively and rationally, and all components of the decision to be assessed 

on an equal footing.7 It allows us to see the value of what we are giving up or 

damaging, in the context of what we are gaining, over the long term. It enables us 

to appreciate, in a language we all understand (money) the full implications of our 

choices.

“�History suggests that the idea of sustainability 

alone has not been enough to drive real 

change. Globally, we continue to degrade our 

environment at an ever increasing rate, with 

significant effects on society, despite widespread 

support for the idea of sustainability.”
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Renewable energy and climate

One of the main advantages of renewable energy is its relatively low greenhouse 

gas (GHG, which includes carbon dioxide) footprint. Until now, in most of the world, 

carbon emissions have been treated as an uncosted externality. A recent life-cycle 

study of various Australian energy sources for export showed that concentrated 

solar and wind power were significantly less GHG-intensive than coal, liquefied 

natural gas (LNG), and coal seam gas (CSG) for the production of electricity.8 Other 

studies have shown similar results for a variety of renewables. 9 

Meeting global targets for GHG emission reductions will almost certainly require 

major deployment of renewable energy. According to the International Energy 

Agency, if we are to have a 50 per cent chance of reaching a 450 parts per million 

(ppm) atmospheric CO2 target, and therefore have an even chance of escaping 

the worst effects of climate change, renewables including hydro and biomass will 

need to make up at least 27 per cent of the global energy mix by 2035. 10 More 

aggressive targets will require even more intensive deployment of renewables.

The new Australian carbon tax will provide a price signal for fixed electricity genera-

tion, and will accelerate the development and introduction of new technologies 

and operational techniques within the Australian power sector. 11 But the imposed 

carbon pricing scheme is unlikely to result in a price high enough to mirror the 

social cost of carbon (SCC), which reflects the full value of the carbon externality 

– the damage to the world’s economy and ecosystems caused by each additional 

tonne of GHG put into the atmosphere. Estimates of the SCC vary (as shown in 

Figure 1)12, depending on the breadth of damage included and assumptions about 

emissions trajectories over time.13 Because the damage from climate change is 

a function of the concentrations of GHG in the atmosphere, the higher our emis-

sions, the higher the SCC will be. The longer we wait to take action, the higher the 

SCC becomes (Figure 2).14 Conversely, if action is taken to stabilise emissions, the 

damage will be lower and the SCC will be lower. 15 Thus, the SCC is directly related 

to the total amount of GHG in the atmosphere – which under business-as-usual 

(BAU) policies, is rising rapidly.16 

Under Stern’s BAU emissions scenario (now eclipsed, such is the rate of growth of 

emissions worldwide), the SCC was estimated at about US$85/tCO2-e. However, 

assuming that world action is successful in stabilising atmospheric GHG concen-

trations to the 450-550 ppm level (now considered a long shot), Stern estimated 

an SCC of about US$ 35/tCO2-e.17 Older studies underestimated short-term 

growth in emissions and looked at fewer elements of damage. More recent studies 

conducted at reasonable social discount rates18, including the US Government’s 

recent review of the SCC for regulatory impact analysis19, and the UK Government’s 

shadow cost of carbon20, reveal the trend of increasing SCC with time. Figure 1 

reflects these differences. 

The implications are clear: Long-term investment decisions in the energy sector 

need to consider not just short- or medium-term carbon costs under an emissions 

trading scheme, but the longer term prospect of the SCC becoming the eventual 
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benchmark for carbon prices21. Looking out to 2050, SCC estimates are more 

variable (see Figure 2), but the trend is clear: The longer we wait to take action, the 

more it will cost us.

Applying the SCC to renewable energy’s GHG advantage over fossil fuels demon-

strates the scale of the potential benefit. Using life-cycle estimates, wind power’s 

carbon benefit over sub-critical coal fired power is about US$80/MWh when using 

Stern’s BAU SCC estimate. Using Ackerman and Stanton’s 2010 low estimate, it 

is about US$50/MWh. When compared to domestic natural gas, these values are 

approximately halved. In context, typical OECD levelised costs without a carbon 

price are about US$70/MWh for supercritical coal-fired power and US$90/MWh 

for offshore wind.22 The effect that the SCC has on overall real costs of fossil 

energy is significant, and all other things being equal, makes low emission energy 

sources (including renewables, nuclear, and carbon capture and sequestration) 

more attractive. 

However, making energy more expensive works against another key social goal: 

poverty alleviation. Access to cheap electricity drives a host of positive social 

outcomes. A recent study into provision of power to small remote aboriginal 

communities in WA found significant benefits to life expectancy, health, employ-

ment opportunities, education, and even fire safety.23 Indeed, Andrew Charlton, 

in his recent essay, argues that if we are to solve the climate issue, we must also 

eliminate poverty. For this, we need energy that is not only clean, it must also be 

plentiful and cheap.24 

Figure 1 
Current estimates of the social cost of carbon (US$/tCO2-e)

Figure 2 
2050 estimates of SCC (US$/tCO2-e)
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Other benefits of renewable energy

Significant reduction in the carbon externality is a major benefit of renewable 

energy. However, there are other benefits that come from the adoption of renew-

ables. Conventional power generation using coal and other fossil fuels carries other 

air pollution externalities: the health, environmental and infrastructure damage 

associated with non-GHG emissions such as NOx (nitrogen), SOx (sulphur), par-

ticulate matter and heavy metals emissions. The European Union estimated total 

air emissions externalities (including GHG) for coal-fired power at between US$2 

and US$23/MWh25. In comparison, wind and solar were estimated to contribute 

between US$0.02 and US$1/MWh in external emissions costs. Recent studies in 

the US have estimated the scale of human health damage from coal-fired power 

stations emissions alone at over US$60 billion a year.26 

We can add the social and environmental damage created during the exploitation 

of fossil fuels – coal mining deaths in China, for example, and the environmental 

footprint associated with open pit mining, to name a few. Similarly, the damage 

associated with mining and producing the materials that go into renewable energy 

generation also cannot be ignored. However, compared to the various social and 

environmental externalities embedded in coal over its life-cycle, renewable energy 

is a clear winner.

Water can also be examined from the perspective of unaccounted for external 

costs and benefits. The total economic value of water explicitly recognises the full 

value (TEV) that each unit of water provides to society, including direct use values, 

and indirect use values such as ecosystem support and recreation.27 Where renew-

able energy systems do not require water for cooling (such as wind and PV solar), 

application of TEV allows monetisation of an additional benefit when compared to 

fossil fuel power systems which do require freshwater cooling.

Renewable energy costs 

Australian 2015 estimated levelised costs of electricity and associated GHG emis-

sions (as CO2 equivalent emissions) are provided in Table 128. This data reflects 

the significant variability in cost between different electricity generating systems, 

when externalities such as carbon are not included. It also shows that if the SCC 

is applied, overall costs of fossil fuel power generation increase significantly to 

the point where they are equivalent to or greater than selected renewables such 

as wind power. While the capital costs of some renewable energy systems have 

been falling over the last decade, there are also wider system integration costs that 

cannot be ignored. 29 As discussed above, the longer we wait to take action to 

reduce global emissions, the higher and the more quickly the SCC will rise, further 

favouring renewables of all types. Recent estimates for total system integration of 

renewables, including adequacy costs (meeting peak demand), balancing costs 

(variable supply inherent in many renewables places greater flexibility demands on 
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the rest of the system), and grid integration costs (expanding and upgrading trans-

mission and distribution systems) range from US$5 to US$25/MWh30, potentially 

defraying some of the air emissions externality benefits. 

All renewables are not created equal

As shown above, arguing for or against renewable energy per se is an empty 

exercise. Blanket statements advocating renewable energy are gross over-simplifi-

cations, as are assertions that gas is good, or coal is bad. The variability between 

technologies, systems, capital and operational costs, environmental and social 

externalities, and local conditions will all have a bearing on overall performance, 

and therefore sustainability as defined here.31 

There is a wide variety of renewable energy 

technologies available, some well-developed 

and widely used (like wind power and biomass), 

others still in various stages of development. 

Different renewable technologies produce power 

in different ways, using different media, require 

vastly different capital expenditure, and produce 

power under varying circumstances. Each type 

of renewable energy has its own life-cycle, inter-

nal and external costs, which must be explicitly 

examined if a full appreciation of the relative 

merits of various systems can be determined.

A recent study in Australia examined a range 

of renewable energy alternatives which could be used to meet expectations of 

broadening MRETs (mandatory renewable energy targets). An evaluation of the 

full life-cycle of environmental, social and economic sustainability of a range of 

Generation Technology Levelised cost 
(AUD$/MWh)

GHG emissions 
(tCO2-e/Mwh)

External GHG cost 
(Stern’s BAU SCC  

@ AUD$ 85/tCO2-e)

Black coal super-critical 60–90 0.75 $63.75

CCGT  
(Combined cycle gas turbine)

75–120 0.38 $32.30

Wind 120–150 0 $0

Fixed PV 300–375 0 $0

Concentrated solar thermal  
with storage

320–700 0 $0

Source: EPRI 2010

Table 1 
2015 levelised Australian electricity costs 

“…arguing for or against renewable energy per se 

is an empty exercise. Blanket statements advocating 

renewable energy are gross over-simplifications, as 

are assertions that gas is good, or coal is bad. The 

variability between technologies, systems, capital 

and operational costs, environmental and social 

externalities, and local conditions will all have a 

bearing on overall performance…”
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relatively small renewable power opportunities for deployment in a rural area was 

completed.32 This particular region of the country has been badly affected by soil 

salinisation which has been caused by extensive clearing of native vegetation. 

Removal of up to 95 per cent of the deep-rooted native trees over vast areas has 

caused water tables to rise, introducing salt into the shallow soils. This phenom-

enon has rendered large areas of land unable to support agriculture.33 To arrest the 

impacts, farmers and the government have started to plant oil Mallee Eucalyptus 

trees, which are driving down the water table, and reversing the effects of soil 

salinisation. A number of the renewable energy options evaluated in this example 

involve planting and copsing Mallee trees to use as feedstock for energy produc-

tion, either in purpose-built biomass plants, or for co-firing in existing coal-fired 

facilities. Wind and various solar possibilities were also examined. Along with the 

traditional financial parameters, a number of key externalities were valued and 

included in the analysis, including the total economic value of water, the com-

munity, biodiversity, and agricultural benefits of salinity reduction, GHG, NOx, SOx 

and particulate emissions.

The results showed that some of the renewable energy options (including small 

scale biomass, co-firing and 100MW wind) were strongly NPV positive, over the 

20-year planning horizon, at discount rates ranging from three to 10 per cent, 

delivering on balance more environmental, social and economic benefits than 

costs. These advantages were maintained over a range of valuations for a range 

of externalities. They were sustainable. However, under the particular conditions 

modelled, other renewable options, including the 20MW solar PV option, were 

not sustainable, using the definition offered earlier in this paper. Sensitivity analy-

sis revealed that, as expected, all renewable energy options performed better as 

energy and carbon prices rose. However, 

the relative differences between the renew-

able alternatives and their overall ranking 

did not change over a wide range of future 

valuation conditions.

The study discussed above revealed that 

there are conditions under which the life-

cycle costs (including SCC) of deploying 

certain kinds of renewable energy systems, 

at particular scales and at specific locales, 

can outstrip the benefits they bring, compared to other alternatives. Not all renew-

able energy is sustainable. But perhaps more importantly, given the scale of the 

carbon emission reduction challenge facing the country and the world, just being 

sustainable is not enough. No energy system can be assessed in isolation. It 

must be considered with reference to other alternatives, over a wide range of 

possible future conditions that reflect the inherent uncertainty in the future values 

of externalities and market commodities, under site-specific conditions. Optimality 

is required. We need to deploy the most environmentally, socially and economi-

cally beneficial energy systems. Simply being good is not good enough; we have 

neither time nor money to waste. 

“�Not all renewable energy is sustainable. But perhaps 

more importantly, given the scale of the carbon 

emission reduction challenge facing the country and 

the world, just being sustainable is not enough. No 

energy system can be assessed in isolation.”
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An energy mix for the future

Providing reliable and reasonably priced power, while reaching our GHG reduction 

targets, is one of the biggest challenges facing Australia and the world today. 

Given our current energy mix, the challenge is significant. However, in many ways, 

Australia is also uniquely positioned not only to make the transition smoothly, but to 

export the resulting knowledge and expertise around the world. That renewables 

can and will play a major role in this transition is certain. However, the ultimate 

degree to which renewable energy deployment is truly sustainable, the timing 

of that deployment, which technologies are used, and the extent to which other 

carbon management approaches in power generation and the rest of the economy 

will play a role, should depend on sound 

policy guided by clear, rational analysis free of 

hyperbole and over-simplification. Shouting 

more loudly does not make something so.

The type of analysis touched on here reveals 

that when it comes to an issue as impor-

tant as Australia’s energy future, there is no 

substitute for objective, all-inclusive analysis 

based on the latest information. As our 

energy policy develops, the need to include 

all of the environmental, social and economic 

factors in decision-making will become ever 

more important if we are to avoid locking in sub-optimal choices. Decisions based 

on pre-conceived qualitative notions of what is “bad, good and better” can be 

misleading. Business-as-usual solutions are not always optimal, precisely because 

business-as-usual decision-making typically ignores wider environmental and 

social costs and benefits, or treats them only qualitatively. Equally, much of what 

we do in the name of sustainability is actually not sustainable at all when examined 

objectively, quantitatively and rationally. However, real optima always exist – they 

simply must be found.

The enormous challenges of the 21st century require a robust and quantitative way 

to reveal the real overall costs and benefits of our actions. Perhaps if we knew the 

real value of what we are gaining and giving up, we would be more likely to change 

our ways, and move onto the path of a more sustainable future. 

It is clear that a more sustainable and economic energy future for Australia depends 

on a mix of energy solutions, including reducing demand by increasing efficiency, 

reducing waste and simply using less. In determining that mix, all options, includ-

ing nuclear energy, should be considered and compared on a full life-cycle basis. 

Renewable energy can play a much more extensive role in our future energy mix 

than conventional wisdom suggests, but it must be sustainable, and its place in 

the overall mix should be an optimal one. By pricing in externalities of all kinds, 

including carbon, more sustainable and inherently more profitable and robust 

energy strategies can emerge. 

“�It is clear that a more sustainable and economic 

energy future for Australia depends on a mix of energy 

solutions, including reducing demand by increasing 

efficiency, reducing waste and simply using less. In 

determining that mix, all options, including nuclear 

energy, should be considered and compared on a full 

life-cycle basis.”
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The economist John Kenneth Galbraith wrote: 

“Few problems are difficult of solution. The difficulty, all but invariably, is in confronting 

them. We know what needs to be done; for reasons of inertia, pecuniary interest, 

passion or ignorance, we do not wish to say so.” 

Sustainable energy and a more sustainable world require that we conquer inertia, 

tame our passions, inform ourselves and ensure that the wider social and environ-

mental impacts of our choices become part of our pecuniary interest. 
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Introduction

Renewable energy has been gaining an increasing foothold in the global energy 

mix, to the extent that non-hydro renewable energy as a share of global power 

generation is forecast1 to rise from three per cent in 2009 to 15 per cent by 2035, 

with much of the increase coming with explicit government support. 

Proponents will use a range of data to justify support for their preferred options 

including anticipated rapid cost reductions, cleanliness and job creation. 

Detractors will equally point out the ongoing cost gap, intermittency, job exports 

and the dependency on government subsidies. 

It seems that each time a particular renewable energy achieves a material share in 

any market, the government or consumers react to the cost imposed on energy 

bills or government budgets. This results in the support that created the gains 

being just as rapidly withdrawn or greatly reduced, with both sides lamenting the 

outcome.

This paper explores the role of renewable energy in the global energy mix with 

a particular focus on Australia. It identifies the rationale for government support, 

reviews the policies applied to date and assesses the results of these policies. 

Finally it addresses the question of how a sustainable role for renewable energy 

could be achieved in Australia. 
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Why bother?

Climate change mitigation demands electricity decarbonisation 

inside 40 years

Renewable energy could logically be defined as energy with a fuel source that never 

runs out, and that is an obvious advantage against any form of energy that, in its 

production, consumes a finite resource. The long-term benefit that this implies, 

and the fact that some forms of renewable energy supply already have a significant 

role in some countries, however, pale by comparison with the characteristic that 

drives today’s global focus on renewable energy sources: they produce zero, or 

near-zero greenhouse gas emissions (GHG).

International agreement to contain average global temperature increases to 

less than two degrees Celsius has resulted in commitments such as that by the 

Australian Government to reduce GHG emissions by 80 per cent of 2000 levels 

by 2050. A large part of achieving this goal is likely to come from reductions in 

Australia’s physical emissions, and from changes in the mix of electricity technolo-

gies, since it is the major source of these emissions.2 Based on modelling for the 

Australian Treasury, it is estimated that Australia must achieve a carbon intensity 

of 0.2 tonnes of CO2 per megawatt-hour or lower to meet its target.3 The sustain-

ability of these political commitments will be determined by the social acceptance 

of the policy responses adopted. 

A shift of this magnitude will require large-scale changes in Australia’s electricity 

generation sector. Gas could play an important bridging role, but in the long-term, 

there will need to be a shift to coal and gas plants with carbon capture and storage 

or replacement of fossil fuel plants with low- or near-zero emission technologies.4 

The modelling for Treasury referenced above5 foresees a major ramp-up of renew-

able energy from under 10 per cent market share to becoming the largest source 

of electricity by 2050. It is challenging and possibly stretching credibility to be con-

fident that the current momentum will cause this transformation to be achieved. 

The time span available, compared with other historical energy sector transitions, 

provides part of this challenge. A second major factor is the need for renewable 

energy generation capacity to be integrated into a system designed around an 

existing structure that might be very different from one with a high renewable 

energy market share.6 

Why should government intervene?

With some exceptions, it is generally accepted that pricing the environmental 

damage of GHG emissions is likely to be the first most effective step towards a 

lowest cost approach to mitigation. This is reflected in the adoption of emissions 

trading systems (ETS) in the EU, New Zealand, Australia and several other coun-

tries. In addition, China is trialling an ETS approach with a view to implementing a 

national system by 2015. 
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However, government intervention beyond pricing carbon is required for a number 

of reasons. These include7 early mover technology development spill-over risks, 

market barriers associated with regulatory structures and existing subsidies for 

fossil fuels, finance barriers and carbon price discounting. These market failures 

are also the basis for the OECD to conclude that there are economic efficiency 

arguments for policy instruments on top of a cap-and-trade system.8 

This is not a policy-free space into which a care-

fully crafted set of complementary policies could 

be introduced to address market failures and bar-

riers and lead to a necessary and sufficient policy 

framework to meet the objective of lowest cost 

mitigation over the long term. A number of policy 

instruments have been introduced to support 

renewable energy, or low-emission technologies. 

Some of these are technology-neutral and some 

are very technology-specific. Their nature and 

performance is worthy of assessment.

A history of boom and bust

In its assessment of the role that renewable energy could play in contributing to 

climate change mitigation, the International Energy Association (IEA) has observed9 

that its projections for market share growth for non-hydro renewable energy in 

power generation is underpinned by annual subsidies that rise almost five times to 

$180 billion. China and the European Union drive this expansion, providing nearly 

half of the growth. The IEA states: 

“�Even though the subsidy cost per unit of output is expected to decline, most renew-

able energy sources need continued support throughout the projection period in 

order to compete in electricity markets. While this will be costly, it is expected to 

bring lasting benefits in terms of energy security and environmental protection.”

Well-intended initiatives deliver results best viewed through 

favourable eyes

A Grattan Institute analysis of a wide range of Australian policies with emissions 

reduction as one of the objectives10 concluded that: “Market mechanisms, such 

as a carbon trading scheme, have delivered the greatest emissions reduction and 

have met targets ahead of time.” While some of the policies in the area of grant-

tendering and rebate programs have other objectives, including building industry 

capacity, it is difficult to conclude that these have been successful. Generally, the 

design of such programs has led to short-term cycles of boom and bust, rather 

than sustainable activity. The following sections assess the three generic policies 

adopted to date, namely tradable green certificate (TGC) schemes, feed-in tariffs 

(FiTs) and grant/rebate programs.

“�…government intervention beyond pricing 

carbon is required for a number of reasons. 

These include7 early mover technology 

development spill-over risks, market barriers 

associated with regulatory structures and 

existing subsidies for fossil fuels, finance 

barriers and carbon price discounting.”
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Tradable green certificates 

TGC schemes have the common characteristic that they impose an obligation on 

energy suppliers to purchase a defined quantum of renewable energy. This liabil-

ity is generally acquitted via certificates or credits that can be created and sold/

bought across the industry. The price is determined by demand and supply in the 

certificate market. The intent, and usually the result, is to generate that nominated 

quantum of renewable energy at the lowest cost. The well-known versions of such 

schemes include the Renewable Obligation (RO) in the UK, Renewable Portfolio 

Standards (RPS) in a number of states in the USA and the Renewable Energy 

Target (RET) in Australia.

The UK’s RO has undergone a number of reforms and improvements since it was 

introduced in 2002 with an original target for a renewable energy market share of 

15 per cent by 2015. This was the UK’s principal mechanism to meet its obliga-

tion under the Renewable Energy Directive which established renewable energy 

targets across the EU for 2020. 

The most significant change to the UK’s RO was to introduce banding in April 

2009, which arose from concerns that the RO was not delivering the optimal mix 

of renewable energy technologies, specifically not enough offshore wind. With this 

change, the RO moved from being technology-neutral to becoming technology-

specific. This moved the RO from a mechanism which offered a single level of 

support for all renewable technologies, to one where support levels vary by tech-

nology, according to a number of factors including their costs, relative maturity and 

potential for future deployment. As described by Wood and Emmett11, through 

this change, the RO became closer to a quasi-feed-in tariff (FiT). In mid-2011, 

the UK Government released a White Paper on Electricity Market Reform, one 

element of which was a proposal to replace the RO with FiTs. Part of the reason 

for this change is a view that the impact on consumer electricity prices will be 

lower through lower investor risk exposure and lower potential for further political 

intervention. It remains to be seen whether this prospect can be realised.

RPS policies in the USA cover more than 20 states and around half of nationwide 

retail electricity sales.12 The design of these policies varies widely and they have 

often been coupled with investment tax credits and/or government loan guaran-

tees to achieve their desired outcomes. 

Australia’s RET has delivered emissions reductions in line with the scheme’s design 

(almost nine million tonnes in 2010) and is projected to continue to do so at a 

cost of $30–$70 per tonne CO2-e
13. This policy has been a success in terms of 

delivering a targeted level of renewable energy at a relatively modest cost. As 

with the RO in the UK, there has been criticism that such schemes deliver the 

lowest cost technology deployable today and may not facilitate investment in a mix 

of technologies that might have lower costs in the long term. Further, the RET’s 

limited life and the adverse effect of other concurrent Federal and State renewable 

policies have meant that the price of certificates has recently been very low and 

there is much debate about whether the 2020 target can be achieved without a 

cost blowout.
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In addition to the criticism that TGC schemes support the cheapest near-market 

technologies (usually onshore wind)14, the other major criticism is that they expose 

investors to market price risk (both electricity price and certificate value), thereby 

increasing costs.15 

Feed-in tariffs and power purchase agreements (PPAs)

FiTs and PPAs with governments have the common characteristic that the price is 

set by government and the market determines the volume, although most schemes 

also have some form of cap to limit total budget exposure and/or consumer price 

increases. This means that market price risk is effectively borne by government, 

and the success of the policy, perceived or real, is determined by the setting of the 

tariff level. There are many variations in the design of FiTs and by 2010 more than 

45 countries had FiTs, including most of Europe.16 

The challenge in getting the FiT parameters right is reflected in the problems 

encountered in Australian states, notably NSW, and the current German and 

Spanish claw-back. The German Federal Environment Minister commented: 

“�Our proposal on assistance for photovoltaics aims to effectively limit the quantity of 

new capacity and the costs. With regard to the sharp rise in new capacity seen in 

the last two years, the renewed adjustment of assistance primarily aims to keep the 

renewable energies surcharge stable for the electricity consumer and to maintain 

public acceptance of photovoltaics and renewable energy in general. The aim is for 

photovoltaics to achieve market maturity in a few years so that the technology can 

be used without any subsidies at all.”

Recent countries to adopt FiTs have sought to avoid past mistakes and imple-

mented systems with the following characteristics: 

• Tariffs differentiated by technology type and project size; and 

• Tariff step-down scenarios with clear criteria for triggering such steps. 

An innovative approach to introducing a level of market competition to reduce 

prices is to run a reverse auction in which project proponents bid a contract price 

for access to a capped total capacity.

Grants and rebates

Grant tendering schemes involve government directly funding projects that 

produce low-emission energy. The history of such schemes has been poor. Grants 

are generally slow to deliver results, have failed to build substantial domestic 

industry capacity (few projects have proceeded to completion17) and are limited 

in their ability to contribute materially to significant reductions in greenhouse gas 

emissions.18 Despite $7.1 billion being allocated to grant tendering schemes over 

the past decade in Australia, only a small fraction of this amount has ever been 

allocated to viable projects. The most recent example of such schemes and their 

challenges is the Solar Flagship Program where the selected projects have failed 

to achieve key milestones and the process has been revisited. This and other grant 

tendering schemes struggle due to a mixture of ill-defined success criteria and the 

complexities of new technologies or projects.
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Australian State and Federal Governments have allocated more than $5 billion 

over recent years to support rebates for a range of products that have claims of 

energy efficiency and/or renewable energy. 

Rebates have suffered from two inherent problems: 

the challenge of setting the rebate at the right level 

to deliver a sustainable outcome and the almost 

inevitable disruption when the budget is exhausted, 

even if the scheme’s end is communicated well 

in advance. The experience has commonly been 

characterised by cycles of boom and bust (the 

solar photovoltaic rebate program) or just bust 

(the recently terminated solar hot water rebate 

program) as schemes become victims of their own 

success.19 

The above criticisms are based on the practical experience of these schemes in 

Australia and have little to do with the potential value or cost of the renewable 

energy being supported. 

Loans, loan guarantees, tax credits and other financial instruments

In various countries, notably the USA, additional financial instruments have 

been adopted to support the primary policy such as the TGC. For example, 

loan guarantees have been effective in lowering financial risk premia for projects 

already underpinned with power purchase agreements triggered by an RPS. In a 

similar vein, the UK is establishing the Green Investment Bank and the Australian 

Government has announced a Clean Energy Finance Corporation. Both institu-

tions intend to target financial market failures and barriers to the deployment of 

clean or renewable energy technologies.

The results to date have been at best mixed – it depends on the 

perspective

Most comparisons of the above policies to support renewable energy deployment 

concentrate on TGCs and FiTs and compare them on the basis of effectiveness 

and efficiency.20 As described above, both approaches can demonstrate a capac-

ity to deliver on policy objectives, including meeting some form of quantity target. 

However, there is some evidence that FiTs generate greater investor support 

through the transfer of market risk to the public sector. This may also lead to 

lower costs. A more pragmatic conclusion might be that either approach, if well 

designed, can produce both effective and efficient outcomes.

The detailed policy design is important because different policies and different 

detailed elements within a policy produce quite different risk mitigation outcomes, 

even when the level of financial support is identical.21 Compared with a TGC, FiTs 

transfer an element of risk from investors to consumers, rather than reduce risk. 

If the objective is lowest cost achievement of carbon abatement targets over 

decades, and when technology risks are also significant, the relevant question 

might more appropriately be when might such a risk transfer be socially justified? 

“�Rebates have suffered from two inherent 

problems: the challenge of setting the rebate at 

the right level to deliver a sustainable outcome 

and the almost inevitable disruption when the 

budget is exhausted, even if the scheme’s end is 

communicated well in advance.”
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What’s wrong with what we’ve got?

The core proposition of this paper is that the primary objective in supporting 

renewable energy is to facilitate a transformation of the energy sector to near-zero 

emissions over 40 years. 

A carbon price, introduced via an ETS is the necessary first step. If the emissions 

cap is binding, additional policy instruments will not lead to any extra reduc-

tion in emissions.22 However, like TGCs, an ETS will 

facilitate near-term low cost emissions abatement, not 

necessarily long-term, lower cost technologies. Early 

movers face higher costs in areas of finance, regu-

latory frameworks and resource mapping. They can 

also face higher barriers to transmission connection 

and may not share the implicit subsidies provided to 

existing energy sources through existing distribution 

and transmission infrastructure. The rewards to early 

movers are low. Innovators will struggle to defend 

intellectual property in an undifferentiated product 

market, and because government policy on climate 

change is inherently unreliable, they cannot bank the 

full value of projected higher long-term revenues for 

low emission electricity. The end result is that markets 

will under-price carbon and therefore will under-invest 

in low emission technologies, including renewable 

energy.23 

A way forward

As implied above, the first and fundamental issue is to define the objective. The 

premise of this paper is that the right approach to support renewable energy is for 

it to achieve a market share consistent with an optimal inter-temporal allocation of 

emissions reduction. This approach begins with implementation of the proposed 

ETS as the central plank in the policy platform. To ensure investor confidence 

in the government’s policy, the forward emissions caps must be structured to 

build credibility, and there must be predictability in the way that the ETS rules 

and mechanisms respond to future developments. Over time, this could allow the 

private sector to rely increasingly on the ETS framework to form a view of the future 

carbon price and investment opportunities, in the way of other industrial markets.

In the short-to-medium term, additional policy instruments must then address 

market failures and barriers to deployment of renewable energy, such as transmis-

sion connection hurdles and subsidies to incumbent technologies. Finally, financing 

and early mover barriers mean that governments should support research and 

“�The rewards to early movers are low. 

Innovators will struggle to defend 

intellectual property in an undifferentiated 

product market, and because government 

policy on climate change is inherently 

unreliable, they cannot bank the full value 

of projected higher long-term revenues for 

low emission electricity. The end result is 

that markets will under-price carbon and 

therefore will under-invest in low emission 

technologies, including renewable energy.”  
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development in areas of national interest24 and early-

stage deployment of a suite of low emission technology 

options25. Technology development at the demonstra-

tion and early deployment stages involves more local 

issues and requires more overall funds than at the R&D 

stage, although risks may be lower. Criteria to target 

this support should be based on addressing the rel-

evant early mover risks. Uncertainty about future costs 

of all technologies means that government should also 

support a variety of options.

Conclusion

Renewable energy will make its optimal contribution to the global and Australian 

energy mix only when it is deployed via a credible, flexible and predictable policy 

framework that creates an emissions-constrained energy market and addresses 

the political risks. This is unlikely to be achieved via policies based on narrowly 

focused self-interest, including most of the approaches used to date. It will cat-

egorically fail if governments do not resist the temptation to make continued and 

unexpected changes to the policy framework.
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John Burgess, Principal, Niche Tasks, discusses an 

alternative model to evaluate the viability of emerging 

technologies.

3. �Financial uncertainty of 
technological change 

	 John Burgess 
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Introduction

Investing in energy generation is a risky proposition. Major changes in energy gen-

eration costs for renewables are anticipated, due to technological breakthroughs 

and improvements, but are not certain. Adding to this uncertainty is climate change 

policy. 

Understanding the nature of the risks involved with deploying sustainable tech-

nologies is vital for investors and also government, to ensure implementation of 

effective climate change policies. 

This chapter explores a new methodology for analysing the financial risk of an 

investment, using probabilistic assessments of various outcomes and then model-

ling an anticipated Net Present Value (NPV).

This approach gives policy makers and investors greater insight into the span of 

risk involved with different technologies. It can also make explicit the impact of 

underlying assumptions around the impact of climate change policies, anticipated 

technological progress and costs of alternative energy sources. 

For example, having a probabilistic assessment of the NPV for different technolo-

gies may help in assessing if the risk for a new technology has diminished enough 

to warrant deployment or that enabling actions, such as land reservation or further 

research and development, should be undertaken now to allow deployment in the 

future if risks decrease further. 
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Sources of uncertainty in the future costs of 
electrical power generation

Australia requires considerable investment in energy generation capacity in 

the years ahead. To mitigate carbon emissions, considerable amounts of this 

investment must be in renewable and sustainable fossil fuel technologies. The 

uncertainties involved in this investment are legion. Understanding the risks involved 

with deploying sustainable technologies is a necessary stage in developing climate 

change policies. Innovative analysis utilising financial modelling of uncertainty can 

provide critical insights for policy setting.

The changing global treatment of carbon emissions is creating uncertainty for 

all investors in energy. New technologies for electrical power generation have a 

number of additional uncertainties, principally driven by the relatively fast pace of 

technological innovation. To illustrate this for the case where investment in the new 

generator is made using private capital, it is useful to disaggregate the sources 

of uncertainty in the cash flow generated by the investment. Thus, the monetary 

value of a new technology today to an investor, or NPV, is a function of:

The revenue the investor will receive after the generating plant is operational;•	

The capital expenditure and operating costs of the facility over its life; and•	

The cost of capital (including both debt and equity) as the discount rate for the •	

free cash flows generated by the operation of the facility.

The first two items, namely the revenue stream and the capital and operating costs, 

are the main sources of uncertainty to the financial viability of a technology.

Revenue stream

The revenue from an electricity generator is, on average, the wholesale price 

of electricity received, times the amount of electricity generated over time, plus 

income from any grants or incentives.

Different technologies have different revenue profiles in terms of electricity gen-

eration. For example, a new gas fired combined cycle gas turbine is essentially a 

base-load facility with a high capacity factor and therefore has constant revenue 

stream with variation of price during the daily and seasonal cycles.1,2 On the other 

hand, some renewable technologies have a low capacity factor, owing to their 

intermittency, such as solar technologies and wind. The revenue streams from 

electricity generation for these intermittent technologies depend on the time of day 

that the energy is generated and vagaries of the weather. Intermittency makes the 

revenue streams more uncertain. Renewable technologies also receive incentives, 

such as those provided by the Renewable Energy Certificates (REC) scheme, 

where the price is market-based and hence uncertain.3

For all energy generation investments, the future trajectory of wholesale electricity 

price, which is linked to the future CO2 price, is important. Therefore, some of the 

factors affecting revenue uncertainty are:



A u s t r a l i a ’ s  E n e r g y  O p t i o n s :  R e n e w a b l e s  a n d  e f f i c i e n c y

34

A u s t r a l i a ’ s  E n e r g y  O p t i o n s :  R e n e w a b l e s  a n d  e f f i c i e n c y

35

The future price trajectory of wholesale electricity price, both on average and as •	

a function of time of day and season, over the life of the facility;

The future price trajectory of CO•	 2 and its impact on the wholesale electricity 

price over the life of the facility. The CO2 price will influence the wholesale elec-

tricity price through its effect on the costs of different new and old technologies 

over time and the rate at which these are introduced;

The future price of RECs applicable to renewable technologies; and•	

The technological improvements in the efficiency of the technologies, that will •	

change their capacity factor and hence revenue raising ability from the sale of 

electricity.

The Australian Treasury provides forecasts of the expected CO2 price trajectory 

to 2050 based on global equilibrium CO2 permit trading models. Treasury also 

provides estimates of the future wholesale electricity price trajectory based on 

the forecast costs of new technologies and their subsequent penetration of new 

generating technologies into the generation fleet portfolio mix under the influence 

of different CO2 price scenarios.4,5 Under the most recent ‘medium global action’ 

scenario, Treasury has CO2 prices climbing to $100/tCO2 by 2050 in real terms, 

while wholesale power prices climb to around $65/MWh, from $40/MWh now. 

Treasury have also provided a second scenario (‘ambitious global action’), which 

sees CO2 prices reaching $200/tCO2 by 2050 and wholesale electricity prices 

climb to over $80/MWh. 

There is still great uncertainty in these projections and scenarios, and great uncer-

tainty in the financial analysis of the new power generating technologies from this 

influence. The greater the level of uncertainty about future revenue flows, the less 

an investor can rely on it in making investment decisions.

Capital expenditure and operating costs

The required capital expenditure for new technologies depends on many uncer-

tain factors. Key risk factors include:

The value of associated construction costs and the Australian dollar;•	

The technological learning curve; and •	

The construction profile. •	

The technological learning curve represents the forecast change in the capital 

costs of plant and equipment in the future. Since the innovation that drives down 

the technological learning curve is related to the progressive amount of capital 

invested in the technology, the technological learning curve is generally expressed 

as a rate of change and as a function of the installed capacity of the technology 

(for example a five per cent reduction in capital required, per doubling of installed 

global capacity). 

In order to undertake financial analysis of particular investments in a particular year, 

the technological learning curve needs to be expressed as the change in capital 

cost per year (for example five per cent change in capital cost every year). To 

convert from one to the other, the fleet generation mix and technology penetration 
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needs to be forecast, which then feeds back to the technology learning curve. The 

interrelated nature of these forecasts creates multiple layers of uncertainty sur-

rounding the future capital costs of a whole range of new technologies for power 

generation.

The other substantial risk that investors face relates to the construction profile 

and life of the new technology. Cash flow calculations discounted to present value 

begin in the first year of the construction through to when the new generation 

capacity is finalised, which can be several years. 

Once the facility is operating, and begins generat-

ing revenue through to the end of the facilities life, 

the cash flows become positive. The initial period of 

construction, referred to as the construction profile, 

is very important in determining whether a project 

adds or detracts value from the net worth of an 

investor. 

In situations where the costs of construction are 

uncertain, as they are for new technologies, it is 

advisable to ensure that appropriate risk contin-

gencies are applied to the overall construction 

cost. The “bare construction costs”, which are 

often quoted for new centralised power generating technologies to illustrate their 

competitive cost, may in fact be only a small proportion of the final capital cost 

when the risk contingencies and other owner’s costs are added in. One method to 

properly estimate these total costs has been provided by the USA National Energy 

Technology Laboratories (NETL) of the US Department of Energy.6 Because the 

risks associated with the total costs of commercialising new technology can be 

high, another layer of uncertainty is added to the capital costs of new technologies. 

These contingencies can be substantial, depending on the level of development of 

the technology, sometimes doubling the capital cost relative to the bare erection 

costs. Total capital costs into the future are therefore inherently uncertain, and this 

is especially true for untested new technologies.

The value of the Australian dollar over time and the proportion of capital compo-

nents that are imported, are also both significant sources of uncertainty. 

The profile of operating costs that will apply in the future for a new power generat-

ing technology also have sources of uncertainty. These are:

For technologies that burn fuel to provide thermal energy, the future cost of fuel •	

can be uncertain. This is particularly the case for natural gas in Australia, where 

current LNG developments on the East Coast could cause the natural gas price 

to reach export parity at some time in the future, a real increase in price for 

the power generators. The burgeoning coal seam gas industry in NSW and 

Queensland, and its contribution to the supply of natural gas for power genera-

tion, also adds a level of uncertainty to future gas prices. As a result, the future 

price trajectory of fuel over the life of the generating facility will add uncertainty 

to its financial viability.

“�Because the risks associated with the total 

costs of commercialising new technology can 

be high, another layer of uncertainty is added 

to the capital costs of new technologies. These 

contingencies can be substantial, depending 

on the level of development of the technology, 

sometimes doubling the capital cost relative to 

the bare erection costs.”
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For technologies that emit CO•	 2, the future price of CO2 is a source of great 

uncertainty. This is especially true of technologies that are expected to improve 

efficiency on one hand, but will suffer a CO2 cost penalty on the other (for 

example new supercritical coal-fired plant7). The cost of carbon capture and 

geological storage (CCS)8 applied to either coal-fired or gas-fired technologies is 

in itself inherently uncertain at this point in time and the efficiency of CO2 removal 

will also be another key source of technical and financial uncertainty.

As can be seen, the future financial viability of new electricity generating technolo-

gies is highly uncertain. This is because most of the components that go to make 

up the NPV for a future investment are uncertain and have cost or revenue streams 

that vary in wide ranges when viewed from today’s standpoint. This means that 

indicators of financial viability, such as the “levelised cost of electricity”9 for a new 

technology should ideally be expressed as ranges that depend on the uncertainty 

level of the input parameters.

Quantifying the impact of risk on investment 
value 

There is another approach to understanding these future investments, and that is 

to determine the probability of when an investor will make a profit, calculated by the 

future probabilistic distributions of an investment NPV. This approach attempts to 

quantify the multiple uncertainties an investor is confronting. In this way, the value 

of the investment “at risk” can be determined and an option valuation approach 

can be applied. 

In considering what amount of money to invest in energy generation, an inves-

tor will be influenced by the amount of money being generated over and above 

operating expenses. The free cash flow (FCF) for each year of an investment in a 

new power generating technology is given by10:

1. FCF = EBIT (1–tax) + depreciation – capital expenses

where:	 EBIT = earnings before interest and taxes, after depreciation

		  = revenues – costs – depreciation

	 tax	 = tax rate = 30 per cent in Australia

The appropriate rate of discount for the yearly FCF is the weighted average cost 

of capital (WACC):

2. WACC = {(1–tax)KDD + KEE}/(D+E)

where:	 KD = cost of debt

	 KE = cost of equity

	 D = amount of debt

	 E = amount of equity
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For any given year, the FCF is discounted according to:

3. FCFn,disc = FCFn/(1+WACC)n

where:	 n = �number of years since the start of investment, over the life of the 

investment

The NPV is then given by (assuming no residual value):

4. NPV = S(FCFn,disc)

Uncertainty in the range of values for the input parameters to a financial calcula-

tion can be handled by allowing the cost and revenue parameters in the above 

equations to be governed by probability distributions. The distribution of NPV can 

be built up probabilistically using a Monte Carlo method, which takes samples 

from the input distributions for each financial parameter in the calculation and 

then repeats the iteration many times and distributes the resulting NPVs. The final 

outcome of the calculation is a probability distribution of NPV for an investment at 

some time into the future. Judgement calls on the shapes of the input distributions 

and their variance can be made on the basis of published data, cost calculations or 

experience. This approach attempts to quantify the risks and makes the underlying 

assumptions about the various uncertainties in the investment explicit. 

The probabilistic NPV is a useful distribution to consider. At an NPV of zero, the 

investor is just earning the cost of capital. For NPV>0, the firm is creating share-

holder wealth, whereas for NPV<0, the firm is destroying shareholder wealth.

The distribution of NPV may be used to determine the “value at risk” to the inves-

tor. The position on the curve where the NPV is zero is important. If, for example, 

10 per cent of values in the cumulative distribution of NPV lie below NPV=0, then 

there is a 10 per cent probability that the firm will earn less than the cost of capital 

and a 90 per cent probability that the firm will earn more than the cost of capital. 

In other words, there is a 90 per cent probability that the firm will increase share-

holder wealth. On the other hand, if the probability above NPV=0 is only 10 per 

cent, then there is a high likelihood that the firm will destroy value for the investor. 

In this way, the probability distribution can be used to determine the “value at risk” 

to the investor, given the uncertainty in the input cost and revenue parameters.

Real option analysis – an alternative approach to 
uncertain financial analysis

If part of the NPV distribution is NPV positive, it means that there is some possibil-

ity that the investment will be wealth creating when commercialisation occurs in 

the future. The portion of the forecast NPV distribution above NPV=0 represents 

possible upside for the investor due to the variance or “volatility” in the distribution. 

Given the possibility that this NPV positive result can feasibly occur, even if the 
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mean NPV is predicted to be negative now, means that an investor can undertake 

decisions that enable them to capture the positive outcomes if they eventuate. 

Since these actions, such as reserving land for CCSG, are much less expensive 

than the final investment decision, they do not put as much capital at risk and are 

NPV positive today. This is referred to as a real options approach, as described by 

Luehrman.11,12 

Figure 1 shows four hypothetical NPV distributions, ranging from a negative NPV 

and small volatility, to a positive NPV and large volatility. The option value is shown 

as the dark blue shaded area. Clearly, the higher the variance of the NPV distri-

bution, the more likely the potential upside. Also, the higher the mean value of 

NPV, the more likely the potential upside and the higher the option value. This is 

analogous to a call option for share purchase on the stock market, where variance, 

or volatility, is provided by uncertainty in future share price. The more volatility, the 

Figure 1 
Four hypothetical NPV probability distributions with different mean and 
variance of the distributions

Option value is shown for NPV>0 by the dark blue shaded area. 
 
(With permission, Australian Academy of Technological Sciences and Engineering (atse), Low Carbon Energy: Evaluation of New Energy 
Technology Choices for Electrical Power Generation in Australia, December 2010, pp. 59).
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higher the option price, and the higher the expected 

mean of the share value distribution, the higher the 

option price. By analysing the future NPV distribution 

of a new technology investment a type of option price 

(or option value) for the technology can be calculated, 

where the option value is the NPV in that part of the 

distribution where NPV>0. This is under the assump-

tion that the investor will go ahead with the future 

investment as long as the cost of capital of the firm 

is being earned.

There are many methods for calculating option value. Perhaps the most common 

is the Black-Scholes method applied to the stock market.13 In this method the call 

exercise price (called “X”) is discounted to today at the risk free rate and the stream 

of cash flows generated by “X” (called “S”) is discounted at the cost of capital of 

the firm. An analytical equation, which includes a term for “volatility”, uses “X” 

and “S” in the form of S/X to compute the option value. In real options, “X” is the 

capital investment (exercise price) needed to secure the cash flows from the future 

revenue and cost streams “S”. Luehrman describes how investment opportuni-

ties can be mapped to a stock market call option and how option value may be 

calculated using the Black-Scholes equation or option value tables.14 

The option value or price is the monetary value that an investor pays now to have 

the right to exercise the option in the future. By analogy, the real option value 

now is the monetary value that the investor should spend now to ensure that a 

capital investment can be made in the future when and if the investment is value-

creating. This option purchase could be for a variety of enabling expenditures now, 

for example R&D, pilot technology studies, infrastructure provision, purchase of 

land, having a “capture-ready” plant for CCS, or purchase of CO2 sequestration 

rights and exploration. Clearly, judgement is required in deciding whether to pur-

chase such an option now, just as it is in the purchase of stock market options on 

shares. Similarly, financial judgement is required in the future when it comes time 

to exercise (or not) the option through the investment of capital.

The Australian Academy of Technological Sciences and Engineering (ATSE) has 

undertaken a study that includes an option value analysis of new power generat-

ing technologies based on their NPV probability distributions at several different 

investment years in the future.15 In this study both the capital costs (“X”) and the 

aggregated future after-tax free cash flows (“S”) were discounted at the weighted 

average cost of capital to calculate the NPV distributions of the new technologies 

at a future investment date using a Monte Carlo method. 

The option value in this analysis was referred to as the Net Present Option Value 

(NPOV) to distinguish it from stock market option value calculation methods such 

as Black-Scholes. The volatility in the input distributions for revenue and costs 

streams, including capital costs, operating costs, CO2 and electricity price trajec-

tories and other input variables were obtained from published data and the NPV 

distributions and NPOV calculated. 

“�Since these actions, such as reserving land for 

CCSG, are much less expensive than the final 

investment decision, they do not put as much 

capital at risk and are NPV positive today. This 

is referred to as a real options approach.”
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The 2010 ATSE study relied on:

Projections of costs and efficiencies of various technologies from the Australian •	

Energy Market Operator (AEMO) based on data provided by the Electrical Power 

Research Institute (EPRI)16,17. (These costs are now dated and it is understood 

that AEMO is undertaking a new analysis of these costs in 2012); and

The CO•	 2 and wholesale electricity price trajectories to 2040 were taken from the 

October 2008 Treasury analysis.

Option values of new power generating 
technologies in 2010

Figure 2 shows the NPOV of a variety of new electrical power generating tech-

nologies using 2010 forecast data, as outlined above and reproduced with ATSE 

permission from the ATSE Low Carbon Energy Report.18 The results shown are for 

investment in the new technologies in 2020, 2030 and 2040, taking into account 

the projected learning curves and other forecast trajectories in parameters, as 

described above. The descriptions of Figure 2 are essentially a précis of those 

contained in the ATSE report, where more detailed analysis is available.

Net present option values for investment in 2020

The net present option values calculated for 2020 shown in Figure 2 are less than 

10 per cent of the exercise price (for example commercialisation investment). Only 

wind has values of S/X around 1.0 (i.e. positive NPV), with gas-based and geo-

thermal technologies having S/X values around 0.7. It is noteworthy that both of 

the gas-fired technologies have a relatively high NPV. This is because they face 

increasing gas and CO2 prices over their lifetime, with the volatility generated by 

uncertainty in gas and CO2 prices in the future increasing the NPOV. For invest-

ment (exercise) in 2020, CCGT has a higher net present option value than CCGT 

with CCS. Other technologies have very low NPV for investment in 2020. 

Proponents of solar technologies have challenged the result that solar currently has 

a negative NPV because they believe that the learning curves for these technolo-

gies are steeper than those published by AEMO. This may well be the case, which 

highlights the importance of undertaking ongoing analysis of this sort utilising the 

latest data and estimates of capital cost, as uncertainties are resolved through 

innovation (“learning-by-doing”) for all the new technologies.

As an example, new analysis has been provided by a solar thermal central tower 

roadmap produced by the USA Department of Energy Sandia National Laboratories. 

This has indicated that the capacity factor of this technology could be significantly 

increased through the timely development of energy storage technologies and 

improved efficiencies.19 If this occurs, the NPOV would be substantially higher for 

this technology in 2020, leading to lower levelised costs of electricity and higher 

option values. ATSE (ibid) has calculated that the levelised costs of electricity for 

solar thermal central receiver energy generation are currently $200-$250/MWh. 
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These costs could substantially decline as further commercialisation of the tech-

nology occurs, but this requires a range of technological advances. According 

to the Sandia Laboratories roadmap, the following technological advances could 

cause the cost of producing energy from solar thermal towers to decline to about 

$80/MWh by 2020:20 

High temperature receivers and hardware (increasing from 600 to 700  •	

degrees C);

Supercritical steam/ CO•	 2 turbine cycles;

Heliostat (mirror) efficiency improvements;•	

Improved high temperature molten salt storage;•	

Reduced parasitic power load;•	

Reduced capex and operations and maintenance; and•	

Increased capacity factor (30 to 72 per cent).•	

This example shows that “purchasing the option” to commercialise a technology 

in the future through research development and deployment can be a powerful 

financial strategy.

Net present option value for investment in 2030

The NPOV for investment in 2030 in Figure 2 are significantly higher than those 

in 2020. This is because the exercise price “X” has decreased due to technology 

Figure 2 
Net Present Option Values (NPOV) for different new electricity generating 
technologies for investment in 2020, 2030 and 2040, normalised by dividing 
NPOV by the present value of the capital expenditure, PV(X)
 
(With permission, Australian Academy of Technological Sciences and Engineering [ATSE], Low Carbon Energy: Evaluation of New Energy  
Technology Choices for Electrical Power Generation in Australia, December 2010, pp. 22)
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learning, and the positive cash flows “S” have generally increased due to increased 

wholesale electricity prices. Also, the REC benefit has now ended and the added 

price for CO2 has increased for those technologies emitting CO2. Thus, the net 

present option values of gas fired CCGT and CCGT with CCS are almost equal by 

2030, with both having S/X > 1. 

Wind and favourably located geothermal technologies have relatively high ranking 

NPOVs in 2030 and NPV>0. Nuclear power is also relatively highly ranked and 

NPV positive. This is because nuclear power, although having higher capital costs, 

has a high capacity factor, a relatively low fuel price, and is not burdened by a CO2 

price.

Net present option value for investment in 2040

By 2040, the option values of the technologies have increased significantly under 

the influence of higher real wholesale electricity prices. Figure 2 shows that the 

technologies that have relatively high NPOVs in 2030 continue to have high 

NPOVs in 2040. These include CCGT with CCS, wind, favourable-region geother-

mal, nuclear and CCGT. Some other technologies are now also achieving higher 

NPOVs, including solar thermal tower with energy storage and solar PV due to 

their steep learning curves relative to the other technologies. 

Portfolio option value

As discussed previously, one way to look at option value is that it is a measure of 

the price that an investor should pay in NPV terms now to “stay in the game” and 

have the option to exercise a commercial investment in the future.

The ATSE Low Carbon Energy study shows (see Figure 2) that the mean of the 

NPOVs of a range of technologies in for example 2040 is around 25 per cent of the 

commercial investment. Another study by ATSE showed that approximately $240 

billion in energy capital investment (real: assuming no inflation) will be necessary 

to provide the required generating capacity for Australia through to 2050.21 The 

$240 billion was for a hypothetical 2050 technology portfolio, with solar technolo-

gies requiring $124 billion of capital investment, wind $24 billion, geothermal $12 

billion, coal with CCS $51 billion, and gas technologies $21 billion, to achieve a 50 

per cent reduction in CO2 emissions by electric power generation by 2050. This 

study took into account projected learning curves for costs and efficiencies.22 

Assuming $120 billion is invested in 2030 and $120 billion is invested in 2040 on 

these technologies, then the NPV of these investments today may be calculated 

to be about $50 billion (assuming a seven per cent real after-tax cost of capital as 

the discount rate). If the NPOV overall is 25 per cent of the exercise price (capital 

investment), then the net present option value in monetary NPV terms now is 

about $12 billion. This is a slightly higher number than the value of $10 billion in 

the ATSE report, due to the progress of time since the report was prepared and 

therefore less discounting to obtain the present value. 
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By drawing in the analogy with a stock-market call option, this indicates that 

Australia purchasing up to $12 billion in carbon mitigation activities, such as R&D, 

technology demonstration, infrastructure development, and so on, would repre-

sent a valuable investment. This is of the same order as, or larger than, current 

government investment in the enabling of low-carbon technologies. Although the 

above rough calculation has been done for the overall portfolio of new technolo-

gies, at this point in time, analysis of the option value of the portfolio contribution 

of the different technologies to a generating fleet has not been undertaken. Such 

a study would provide important insights to positive policy settings that would 

enable effective carbon mitigation. 

Conclusions

Understanding the risks that exist for investors in delivering Australia’s energy 

needs is crucial. Much analysis and policy recommendations are made through 

simple comparisons of levelised costs of electricity. They do not take into account 

the full trajectory of CO2 and electricity prices into the future and the uncertainties 

associated with these price trajectories. The LCOE approach gives an inaccurate 

impression of the risks and uncertainties involved, and 

is an imperfect means of developing policy or making 

investment decisions.23 

The analysis of probabilistic NPV in the context of new 

technologies for electrical power generation yields new 

financial insights that provide important guidance for 

both policy setting and investment decisions. This is 

especially true of the calculation of NPOV. The simulation 

of risk to an investor and how it changes with techno-

logical innovations, the price of carbon dioxide, or other 

real world developments, provides valuable insights into 

the way in which decisions can be made today that add 

to the net wealth of the nation as a whole. It enables a real options approach to 

be implemented in Australia’s efforts at minimising carbon emissions with more 

nuanced policy decision making.

Clearly, more analytical work could be done in applying option value theory to 

new technology investment in electrical power generation. For example, option 

value could be calculated for different scenarios and fleet portfolios for different 

levels of CO2 emission reduction, including factors such as the transmission infra-

structure required and provision for electrical energy storage. The method could 

also be applied to energy efficiency measures, especially those in industry where 

a significant capital investment could be required. ATSE is currently undertaking 

such a study and it is likely that the NPOV method will be extended into the further 

analysis of portfolio option value of the type described.

“�By drawing in the analogy with a stock-

market call option, this indicates that 

Australia purchasing up to $12 billion in 

carbon mitigation activities, such as R&D, 

technology demonstration, infrastructure 

development, and so on, would represent a 

valuable investment.”
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1	� Combined Cycle Gas Turbine (CCGT) – a gas turbine generator where the hot exhaust gases are used to generate steam in a heat 
exchanger and then, for added efficiency, drive a second steam turbine.

2	� Capacity Factor – Ratio of actual power of a generating plant over time to its output if it had operated at its full capacity for the entire 
time.

3	� REC – Renewable Energy Certificate, a tradable market instrument to ensure Australia achieves 20% renewables in its electricity supply 
by 2020.

4	� Australia’s Low Pollution Future: The Economics of Climate Change Mitigation, 2008, Australian Government Treasury, October.

5	� Strong Growth, Low Pollution: Modelling a Carbon Price, 2011, Australian Government Treasury.

6	� Cost Estimation Methodology for NETL Assessments of Power Plant Performance, National Energy Technology Laboratory, US 
Department of Energy, DOE/NETL-2011/1455.

7	� A supercritical coal fired boiler is one in which the steam has a temperature above the thermodynamic supercritical point of water and 
is therefore more efficient than earlier designs.

8	� National Carbon Mapping and Infrastructure Plan – Australia, 2009, Concise Report, Carbon Storage Taskforce, September, Department 
of Resources, Energy and Tourism, Canberra. 
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23	� The determination of LCOE assumes a constant electricity price over the life of the facility. An assumption must also be made about 
the CO2

 price over the same facility life (normally that the CO
2
 price is constant). This tends to favour technologies that have a cost 

penalty associated with CO
2
 emission, since generally the price of CO

2
 will increase over the life of the facility as CO

2
 emission targets 

are increased. This was shown in the ATSE analysis, where coal fired facilities without CCS had a relatively favourable levelised cost of 
electricity (LCOE), but a very low option value (NPOV).
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John Dashwood, Chairman of ExxonMobil Australia, 

describes the importance of energy efficiency to 

meeting the world’s future energy demand.

4. �The outlook for energy: 
A view to 2040

	 John Dashwood
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How will we fuel the future? We know from centuries of history that reliable and 

affordable energy is essential to human progress. To sustain progress, we must 

continue to expand the world’s energy supplies, improve the ways in which we 

consume energy sources, and address attendant environmental challenges. 

The connection between affordable energy and improved standards of living is 

undeniable. Energy heats and cools our homes. It enables people and goods to 

travel across town and around the globe. It powers the technologies that improve 

our health, well being and economic lifestyles.

Energy’s benefits extend far beyond what individuals use at home, at work and on 

the road. A range of essential activities such as agriculture, computing, manufac-

turing, construction, and health and social services, depend on access to modern 

energy.

Yet, according to the International Energy Agency (IEA), 1.3 billion people around 

the world lack access to even the most basic forms of energy.1 With the world’s 

population expected to grow from around seven billion people today to nearly nine 

billion by 2040, expanding access to affordable, reliable supplies of energy will be 

critical to continued global prosperity. 

By 2040, the vast majority of the world’s people will live in developing (non-OECD) 

countries where economic development and increased prosperity are improving 

living standards. In fact, daily life in many developing countries will mirror that of 

Australia, the US or Europe – urban, modern and interconnected. More people - 

with greater affluence – will mean more cars on the road, more modern appliances 

and conveniences, more technology, and more travel. Burgeoning industries will 

need fuel for manufacturing; people and businesses will need reliable electrical 

John Dashwood joined Esso Australia in 1982. He has held a series of technical, 

planning, marketing and managerial assignments in Australia, including as Production 

Operations Manager for Esso Australia. John had several international assignments 

including the Houston-based role of Strategic Planning Manager for ExxonMobil’s 

global gas marketing company. He has twice worked in London, to manage 

ExxonMobil’s gas sales business in Europe and later as the UK-Netherlands Joint 

Interest Manager for ExxonMobil International Limited.

He was a Council member of Oil & Gas UK, the upstream industry association, where he provided leadership 

for fiscal and economic activities. In May 2009, John returned to Melbourne as the Chairman of the 

ExxonMobil group of companies in Australia. He is a Member of the Business Council of Australia and is a 

board member of the Australian Petroleum Production and Exploration Association. 
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power. Maria van der Hoeven, Executive Director of the IEA, puts it simply when 

she stated: 

“�Nobody can do without energy. The relationship between economic growth and the 

demand of energy is crucial, and the availability of energy sources to economies is 

crucial.”

ExxonMobil studies these types of trends to help plan for the future. Each year, the 

findings are published in a report called The Outlook for Energy. This wide-ranging 

document is created through a rigorous, ongoing assessment that includes a 

detailed analysis of approximately 100 countries, 15 demand sectors and 20 

fuel types. It is underpinned by economic and population projections as well as 

projections for energy efficiency gains that stem from ongoing improvements in 

technologies and energy management policies, along with imposed costs from 

carbon policy. Building on many decades of experience, ExxonMobil conducts 

this work utilising in-house modelling tools, as well as input from a wide variety 

of third-party organisations such as the International Energy Agency and the US 

Department of Energy.2 

ExxonMobil’s Outlook – which has many similar findings to other long-term energy 

projections – predicts that over the next three decades, increases in energy demand 

will be driven by population growth and economic development. The dramatic 

transformation that is taking place around the globe is setting the stage for a future 

in which all affordable and reliable forms of energy will be needed.

A glimpse of the future

Today, the countries of the Organization of Economic Cooperation and Development 

(OECD), which includes 34 developed nations, consume about 225 quadrillion 

British Thermal Units (BTUs) of energy per year, accounting for roughly 45 per cent 

of the world’s energy demand. OECD demand will remain essentially flat through 

2040, even as GDP nearly doubles. 

Meanwhile, non-OECD energy use will expand by more than 60 per cent, reaching 

close to 500 quadrillion. Again, this increase in demand will be driven by population 

growth and booming economies – five-sixths of the world’s population will reside 

in non-OECD countries, and economic growth will be strong, with economies 

expanding by about 4.5 per cent a year, compared with about two per cent a year 

growth in mature economies. However, even by 2040, per-capita energy use in 

developing countries will still be about 60 per cent less than in OECD countries.

ExxonMobil expects worldwide energy demand will be about 30 per cent higher 

in 2040 than it was in 2010. This presents an enormous challenge - the world 

will need to expand energy supplies in a way that is safe, secure, affordable and 

environmentally responsible. Trillions of dollars of investment and major advances 

in technology are required. Yet, despite the challenge, this is a good news story, 

because it means that people everywhere are seeking – and achieving – higher 

standards of living and the health, education and social benefits of modern living.
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Looking to the past

What about the role of renewable energy sources, such as solar, wind and biofu-

els? Can these fuels help us meet growing demand for energy while limiting our 

reliance on carbon-based fuels? The simple answer is yes, although it will take time 

– and further technology development – before renewables can achieve significant 

market penetration. To better understand the process by which renewables will 

develop and grow, it helps to look to the past.

Through the years, the world’s use of various energy sources – what we call the 

“energy mix” – has changed due to a wide range of factors, such as technology, 

scale, cost and availability. 

In 1800, the primary source of energy was wood. When steam was introduced as 

a source of horsepower for both transportation and industry, the world needed a 

denser, easier-to-transport fuel, and coal was the natural solution. Yet it took several 

decades before coal overtook wood as the world’s largest source of energy.

Oil was discovered in 1859, but initially it was only used in lighting, as a replace-

ment for whale oil. It wasn’t until the rise of the internal combustion engine that 

fuels produced from oil began to replace coal.

Natural gas was discovered even before oil, but there were limited ways to trans-

port it from source to market. It wasn’t until developments in technology made it 

Figure 1  
Energy demand

Without improved energy efficiency and intensity gains, OECD demand would grow by nearly 90 per cent, 
and non-OECD by more than 250 per cent.
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possible to construct steel pipelines that gas markets could be developed in any 

significant way. And in recent times, new technology in shipping has allowed gas 

to be transported as liquefied natural gas to markets even further away from the 

supply source.

The lesson from the past two centuries is that shifts in the global energy mix are 

possible. However, substantial change – even change driven by economic or 

efficiency reasons – typically occurs over decades, not years. It takes significant 

amounts of time and investment for an energy idea – even one that is proven in the 

laboratory or in small field applications – to become an everyday energy reality. 

The growth path for renewables will follow a similar trajectory as the traditional 

hydrocarbons that preceded them. First is the development of the fuel source 

itself, along with enhancements in how we employ it to power vehicles or machin-

ery. However, just as important is the technology and infrastructure development 

for producing the fuel source on a commercial scale – so that it is affordable, 

accessible and reliable for people and businesses around the world.

As we moved from wood to coal to oil and natural gas, we had to invent, create 

and develop coal mines, oil extraction processes, refining techniques, processing 

plants, pipelines, transportation methods and other forms of infrastructure – includ-

ing, for example, the corner petrol station. We also had to develop the end users of 

the energy – the machinery and engines that ran on the fuel itself.

Renewables today require significant investment, research and technological 

advancements to improve their reliability and accessibility – and lower their costs 

– so that they can compete with more traditional fuels. 

It is worth noting here that ExxonMobil does not factor “break-

through” technology into its Energy Outlook. Yet technology 

has historically been a “game changer” in terms of energy 

supply, and this will continue into the future. For example, a 

breakthrough in low-cost, large-scale storage of electricity 

would greatly improve the prospect for wind and solar for 

electricity generation. Faster-than-expected drops in battery 

costs would likely make electric cars less expensive and could 

lead to faster adoption by consumers than currently anticipated. And of course, 

new combinations or incremental enhancements of existing technologies can also 

result in significant changes. 

Low-carbon fuels will grow rapidly

To be certain, even without major technology breakthroughs, renewables will grow 

rapidly over the next three decades. By 2040, wind, solar and biofuels will provide 

about four per cent of the world’s energy needs, compared to about one per cent 

today. Growth in wind power will be especially strong, rising at about eight per cent 

a year, or more than 900 per cent, from 2010 to 2040.

“�The growth path for renewables 

will follow a similar trajectory as 

the traditional hydrocarbons that 

preceded them.”
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Yet – as Figure 2 shows – other fuels with low carbon intensity will grow rapidly 

too, including natural gas, with demand increasing about 60 per cent by 2040, and 

nuclear power, which is expected to grow at a rate of 2.2 per cent per year.

In 2040, oil will still be the world’s largest energy source, led by the 70 per cent 

increase in demand from non-OECD nations, where growing prosperity is leading 

to an increase in the movement of goods and people. In other words, the strong 

growth of renewables will be impressive, but starting from such a small base – and 

given the huge scale of global energy demand – it will take more than a few years 

before renewables can come close to the scale and contribution of traditional 

fuels.

It is important to note that government policy has a significant impact on both energy 

demand and supply. A contributing factor to these projections is the expectation 

that OECD and leading non-OECD countries, like China, will gradually adopt poli-

cies that impose a cost on CO2 emissions – in the form of taxes, caps, mandates, 

subsidies and other measures. The Energy Outlook assumes a cost on carbon 

rising from around $30/tonne in 2020 to $60/tonne by 2030, and $80/tonne by 

2040. As higher carbon fuels such as coal become more expensive, demand shifts 

to the lower-carbon energy options of natural gas, nuclear and wind.

Efficiency – the “silent supply”

There is another approach to meeting tomorrow’s energy needs that often gets 

overlooked. Improving the efficiency of the fuels we currently use – through tech-

nology enhancements and energy management practices – can have a dramatic 

impact on demand. In fact, demand growth in global energy use by 2040 would be 

more than four times greater than projected – that is, growth of about 130 per cent 

– were it not for expected gains in energy efficiency across the world’s economies. 

For this reason, I often refer to efficiency as “our most powerful energy source.”

Figure 2  
World energy mix
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Finding more efficient ways to do things is part of human nature. It’s what led to the 

first wheel and eventually 18-wheelers – examples of technologies that boosted 

efficiency and made us more productive. 

When it comes to energy use, businesses and individuals want to achieve their 

desired results while minimising the amount of energy required. In the past, this 

was primarily a cost-saving mechanism – switch-

ing to a more fuel-efficient car makes sense during 

times of high petrol prices, for example. Today, 

however, energy-saving technologies are seen as 

delivering dual benefits for both businesses and 

consumers as they save money and reduce their 

carbon footprint.

Transportation is one of the most fertile areas for 

efficiency gains. It is likely that the cars on the 

world’s roads in 2040 will consist of a very different mix than what we have today, 

with hybrids and other advanced vehicles accounting for nearly 50 per cent of light 

duty vehicles, compared to only about one per cent today. The world’s personal 

automotive fleet will include conventional gasoline and diesel vehicles, hybrids that 

use gasoline plus a small amount of battery power, plug-in hybrids, electric vehicles 

and cars/light trucks that use compressed natural gas or liquefied petroleum gas.

The shift in the global vehicle fleet is primarily driven by tightening government 

standards on vehicle fuel economy. Improvements to the conventional vehicle, 

including internal combustion engine improvements such as turbocharging, higher-

speed automatic transmissions, improved aerodynamics and reduced weight can 

improve fuel economy and reduce CO
2 emissions by more than 30 per cent. 

Figure 3 
Global efficiency minimises demand growth
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“…demand growth in global energy use by 2040 

would be more than four times greater than 

projected – that is, growth of about 130 per cent – 

were it not for expected gains in energy efficiency 

across the world’s economies.”
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These types of efficiency improvements can also have a large impact in industrial 

settings. To give an example, the global energy industry will see its energy use rise 

by only five per cent over the next three decades as a result of ongoing enhance-

ments to efficiency and reductions in natural gas flaring.

Finally, we can continue lowering the carbon intensity of the energy supply mix 

by expanding the use of natural gas, because it is abundant and affordable, and 

emits up to 60 per cent less CO2 than coal when used for electricity generation. 

Using natural gas is currently the lowest cost alternative to reduce CO2 emissions 

on a large scale. 

Here in Australia – as in many parts of the world – natural gas is plentiful. The enor-

mous amount of natural gas and liquefied natural gas infrastructure built in Australia 

over the past 30 years is a testament to the value that this resource provides us, 

both here at home and as an export. It also proves that energy infrastructure will 

get built if it is economic and supported by a stable legal framework – an important 

lesson for the future growth of renewables.

An integrated energy mix

Long-term forecasts show that the world’s energy supplies will continue to grow 

more diverse.

Successfully meeting future demand will require foresight, sound energy policies 

and effective long-term planning, followed by huge investments and years of work 

to build the infrastructure required to produce and deliver energy and chemicals. 

It will also take an ongoing ability to understand and manage an evolving set of 

technical, financial, geopolitical and environmental risks in a dynamic world. 

There is no one “magic bullet”, no single energy source that is the answer to our 

energy challenge. It will take more energy – of all economically viable types – to 

meet the world’s demand and ensure that economic development and prosperity 

are available to all.

In fact, it is not a competition between traditional forms of energy and renewables. 

They are all complementary and all necessary. Along with improved efficiency, 

hydrocarbons and renewables will work together to meet growing demand – while 

minimising environmental impacts in Australia and around the world.

Endnotes

1	� International Energy Agency, 2011 World Outlook for Energy (2009 data).

2	� The Outlook and this paper include forward looking statements. Actual future conditions (including economic conditions, energy 
demand, and energy supply) could differ materially due to changes in technology, the development of new supply sources, political 
events, demographic changes, and other factors discussed herein and under the heading “Factors Affecting Future Results” in the 
Investors section of www.exxonmobil.com. Material is used in this article with the permission of Exxon Mobil Corporation.
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Andrew Pickford, Managing Director, ISSA Indo-Pacific, 

discusses options for transitioning the energy market 

structure from one based on energy as a commodity to 

one based on providing an energy service.  

5. �Dealing with peak demand:  
The potential of an energy  
services model

	 Andrew Pickford 
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Introduction

Historically energy markets have developed to deliver a commoditised product. 

However, there is growing recognition that in order to manage the electricity peak, 

and to defer rising electricity prices, alternative market structures should be adopted. 

This paper describes the emerging problem of fast growing peak demand; outlines 

one approach to address this growth; and introduces the broader concept of an 

energy services model which has significant potential to achieve major efficiency 

gains for producers and consumers. 

Peak demand and efficient markets 

Over the past decade, the growth of peak demand has resulted in the need for 

expensive capital investment, a key driver behind electricity price rises. 

Providing electricity to consumers requires the capacity to generate and shift elec-

trons when the consumer flicks a switch on. This capacity is the actual generation 

(be it coal, gas or hydropower) and the power lines to move the electrons from site 

of generation to consumption. The underlying infrastructure which enables this 

are commonly referred to as transmission and distribution networks. At present, 

network costs can equate to slightly less than half the total end cost of electricity.1 

Sophisticated regulatory and planning mechanisms aim to facilitate the building, 

in advance, of the necessary transmission and distribution networks to account 

for energy usage, even if it is only used for a very short period. The cost for this 
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capacity, which can be unused for as much as 364 days a year, is factored into the 

price paid by consumers. 

The Federal Government’s draft energy white paper noted the 2008–09 Victorian 

case study where: “About 25 per cent of network capacity was used for only 10 

days.”2 The cost of financing, building and maintaining access to this infrastruc-

ture is ultimately borne by the consumer. Quantifying the actual cost for this peak 

capacity is a difficult exercise. However, the following example of two local energy 

distributors highlights the large amount of money involved:

“�Ergon Energy and ENERGEX must build infrastructure capacity that is only required 

a few days a year to meet this [increasing] peak demand. In south-east Queensland 

it is estimated that, in the next three years, it will cost $1 billion to meet the top 

one per cent of energy demand. By way of example, currently 11 per cent of the 

ENERGEX network is required to meet a level of demand which occurs only one per 

cent of the time.” 3

These low productivity outcomes are driven by Australia’s institutional framework 

which ensures Australians have a reliable electricity system and that capacity is 

built before it is needed. 

Historically, electricity systems were state-based and owned. They operated as 

a single entity encompassing generation, transmission, distribution and retail 

functions. A key part of the competition reforms of the 1990s (implemented to 

varying degrees in different states) saw the disaggregation of these entities into 

sector-specific roles, such as only generation or only transmission, as well as 

some privatisation. Simultaneously, there was the emergence of state-based 

economic regulators to oversee monopoly components, such as transmission 

infrastructure.4 

The result of disaggregation, privatisation and prudent economic regulatory over-

sight introduced competitive forces where once there was a bureaucratic decision 

making process. The previous large electricity bureaucracies built additional assets 

when planners deemed fit. The reforms introduced competition into parts of the 

market, such as generation, and limited the “gold plating” and over-building of 

monopoly infrastructure by diligent regulation.5 However, in achieving these positive 

results, there were a number of unintended consequences. In an integrated entity, 

efficiency was often considered across the entire system. In growth scenarios, 

where there were alternative options (such as demand management), they were 

compared against, for example, building more transmission or distribution lines 

and the cheaper option would be adopted. For the newer, stand-alone, disag-

gregated businesses, not only does this not make economic sense (i.e. why invest 

in something if you cannot capture the benefits) it is often not permitted by the 

economic regulator and acts against the commercial reality of a profit-maximising 

firm.6 

Overall, disaggregation and privatisation were successful in providing lowest mar-

ginal cost energy, but they also introduced new problems. As the focus shifted to 

competitive tension in generation and retail markets, and regulation of the monop-

oly infrastructure, the opportunities for system-wide efficiencies decreased. This 

unintended consequence has been exacerbated by the relatively fast growth of 
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peak demand compared to average demand growth. This has partly been driven 

by cheaper and higher uptake of high use consumer goods, such as plasma tele-

visions and air-conditioners. In particular, the use of air-conditioners aligns with 

a traditional high point of electricity use, i.e. late afternoon. Given transmission 

and distribution capacity has to be built for peak conditions, this has resulted in 

escalating costs paid by all consumers and an increasingly inefficient system, as 

some of this capacity is only used for a day, or even an hour a year. 

The problem of growing peak demand has been succinctly highlighted in the 

Federal Government’s draft energy white paper,7 when it noted: 

“[W]hile it may cost around $1500 to purchase and install a two kilowatt reverse cycle 

air conditioner, such a unit could impose costs on the energy system of $7000 when 

adding to peak demand.”8

A proposal to address peak demand

One way to address the increasing peak load growth is to incorporate, within 

the national electricity market, on a locational basis, a mechanism for an open 

competition to address or mitigate network peaks.

This proposal would require an alignment of transmission 

and especially distribution planning cycles and associated 

regulatory mechanisms. Locational-based needs would 

be identified through demand forecasting and subsequent 

identification of capacity limitations on the distribution 

and transmission network. Based on a set time period, 

perhaps 10 years9, energy service providers (including 

network companies) would be invited to bid to address 

locational-based constraints. It could formally open the 

market to non-network solutions, such as demand-side 

participation (DSP) based on a competitive bidding process. Importantly, it would 

not lock in a particular technology or approach, but needs to be of a sufficient time 

frame to encourage commercial investment. 

At the time of writing, the Australian Energy Market Commission (AEMC) was 

conducting the Power of Choice review. A supplementary paper titled Demand 

Side Participation and Profit Incentives for Distribution Network Business, looks at 

regulatory decisions for distribution and transmission businesses based on all the 

costs and benefits of DSP. It also flagged potential options, realigning the regula-

tory incentives of DSP, including:

An equalisation scheme which establishes parity in the incentive power and •	

treatment of capital and operating expenditure;

Expanding existing demand management schemes;•	

Permitting network businesses to keep all of the savings of any capital expendi-•	

ture which is avoided by a DSP project;

“�One way to address the increasing peak 

load growth is to incorporate, within 

the national electricity market, on a 

locational basis, a mechanism for an 

open competition to address or mitigate 

network peaks.”
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Providing more certainty on how DSP-expenditure is treated in the rules; and •	

Extending the regulatory control period past five years.•	 10 

The proposal outlined in this paper for addressing peak demand is consistent 

with the approach of the AEMC review. However, this proposal takes the next 

step and uses the regulatory-led process over a set period of time to bid for solu-

tions. Transmission, and especially distribution, entities would be one bidder in the 

process, but not be the sole provider of solutions. 

The mechanism for open competition to mitigate or 

address network peaks would be through creating a 

market for energy services. This approach is agnostic 

as to whether the network peak is shifted, deferred or 

satisfied by another service. By conceptualising the 

provision of an energy service to deal with the peak, 

it is possible to apply the concept to the entire energy 

supply chain. Proving the energy services concept for 

peak demand could allow it to be trialled on a broader 

basis for all energy demand. 

While the outlined proposal would not be dependent 

on smart meters, once they are deployed they would 

provide additional options to mitigate localised network peaks and could provide 

lower cost options. Winding back and closing state-based energy efficiency 

schemes, or, at the very least, rolling them into a federal equivalent would further 

enhance the effectiveness of this approach.11 These state-based energy efficiency 

schemes are bolted on to the existing market framework as they impose liabilities 

on large retailers to achieve a similar outcome to that proposed in the energy 

services model. However, if an energy services model is implemented properly, 

the demand for system-wide efficiency would be the driver and options to provide 

energy efficiency outcomes would expand to include cheaper alternatives than 

currently exist within mandated state-based schemes. 

An energy services model 

Significant gains could be achieved in transitioning to an energy services model, 

which is a mechanism for creating a marketplace that encourages efficiency on the 

demand side similar to the efficiency created on the supply side. 

Dr Peter Fox-Penner, Principal and Chairman of The Brattle Group, provides one 

of the simplest explanations of energy services to date: 

“��To put it simply, customers would pay for each lumen of light generated rather than 

each watt of power consumed. The cellular industry provides a crude analogy: Your 

mobile phone service charges you for minutes, text messages, and video down-

loads rather than for bits per second, which is the underlying commodity. In the 

new model, utilities would charge you for the amounts of light, computer time, heat, 

cooling, and so forth that you use.”12

“�If an energy services model is 

implemented properly, the demand for 

system-wide efficiency would be the driver 

and options to provide energy efficiency 

outcomes would expand to include 

cheaper alternatives than currently exist 

within mandated state-based schemes.”
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While this concept may seem straightforward, it would be a radical departure from 

existing patterns of electricity provision. 

Applying Peter Fox-Penner’s mobile phone industry model to the electricity indus-

try would yield substantial benefits. Creating a market that involves selling energy 

services rather than just selling kilowatt hours would realign the incentive structures 

of service providers to provide efficient solutions to consumers (such as heating, 

cooling or charging an electric vehicle), rather than just offering electricity as a com-

modity. This model would also provide a mechanism for a range of participants to 

invest in capital equipment which could improve energy efficiency (and customer 

satisfaction), because it would allow for them to capture the financial benefits. 

Overall, an energy services model could 

expand consumer choice; monetise energy 

efficiency investments; limit the need for 

government involvement in electricity grids; 

flatten and reduce overall energy use; and 

have numerous environmental benefits. Given 

these advantages, the following question 

arises: Why is it not being used? The main 

reason it has not been introduced is that the 

present industry structure and profit drivers 

are linked (and regulated) to incentivise making, shifting and selling kilowatt hours. 

Electricity is priced as a physical commodity, not for its actual purpose. 

Electricity was not always sold as a commodity. For a brief period at the dawn 

of the electrical era, industry pioneer Thomas Edison offered light and heating as 

a service on Manhattan Island. Soon after, the economies of scale derived from 

treating energy as a commodity dominated. While legacy and related regulatory 

systems (as well as profit motives) remain in place, a series of subtle changes have 

revealed cracks in the existing approach. Current circumstances are now allowing 

the re-emergence of a viable energy services model due to a range of subtle, 

interconnected forces, namely:

Increasing structural costs of hydrocarbon fuels; •	

An explosion in the take up of consumer goods such as plasma televisions and •	

air conditioners, making the Australian peak load sharper and higher;

Increasingly common and cheaper technologies such as Smart Meters and •	

“smart appliances” allowing greater levels of communication and control;

The high cost of accommodating intermittent renewables and pricing carbon;•	

Public resistance towards further price increases needed to modernise and •	

expand the existing grid; and

Greater public acceptance of buying services (for example a mobile phone) •	

rather than simply a commodity.

These trends are already resulting in some companies trialling a service-type 

approach to electricity sales. A large US utility, NRG Energy, is already offering a flat 

monthly fee to access its fast electric vehicle charging stations in Houston.13 This 

is occurring outside of existing regulatory settings for, as yet, an undefined market. 

“�Creating a market that involves selling energy 

services rather than just selling kilowatt hours would 

realign the incentive structures of service providers 

to provide efficient solutions to consumers (such 

as heating, cooling or charging an electric vehicle), 

rather than just offering electricity as a commodity.”
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A broader re-introduction of the energy 

services model would require substan-

tial changes to market frameworks and 

regulatory mechanisms to quantify the 

gains of reduced energy demand neces-

sary to incentivise market participants. 

In the Australian context, the energy 

services model would be applied by having a long-term roadmap to transition 

from the current market, which is structured on the provision of energy as a 

commodity, to one based on providing an energy service. By setting a transition 

approach, existing entities could prepare for the new structure. While large parts 

of the existing network will still be needed, perhaps as a core backbone of the new 

energy services model, competition (such as in peak time periods) could introduce 

innovation between retailers, demand-side aggregators and potential electric car 

consortiums. 

The following conditions would need to prevail to implement fully the energy ser-

vices model:

There would need to be a shift to cost reflective prices as is the case already in •	

Victoria, with other jurisdictions limiting the true cost of power to be borne by 

the consumer; 

There would have to be time-of-use pricing (enabled by Smart Meters); •	

Restrictions on retail regulation would need to be removed; and•	

There would be the need for a facility to address the small percentage of homes •	

and businesses affected when the model does not produce a price outcome 

similar to that of larger markets.

The mobile phone industry is a good example of how an energy services model 

would be experienced by the consumer. Free or heavily discounted equipment 

(phones) are currently provided under varying contracts according to need, usage 

and desire to hedge against risk. In the case of an energy service approach, a 

consumer would buy an energy service, much in the same way they subscribe to 

a high use mobile phone service. The hardware (which produces significant energy 

efficiency gains) would be underwritten by the service provider as they could then 

deploy such assets with a guaranteed cash flow, under a service contract. Under 

certain conditions, this model may result in different prices set on air-conditioners 

depending on agreed reliability standards. Technological advancements, such as 

efficient storage devices, could offer greater opportunity for innovation. Having a 

market incentive for such technological advances will help facilitate them. 

“�These trends are already resulting in some companies 

trialling a service-type approach to electricity sales. A large 

US utility, NRG Energy, is already offering a flat monthly fee to 

access its fast electric vehicle charging stations in Houston.”
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